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INTRODUCTION

The properties of basic kinetic nonlinearities (e.g., particle
trapping, nonlinear Landau damping, etc.) in uniform plasmas are
well understood, and an extensive literature exists on the
subject.l- 3 However, in many problems of current interest,
plasma nonuniformity plays an important and fundamental role.
Although helpful insight can often be obtained using local, or WKB
generalizations of nonlinear phenomena in uniform media, such
extrapolations often miss important features. Consequently it is of
interest to develop a systematic study of nonlinear phenomena in
the context of a well-defined problem in which the intrinsic
plasma nonuniformities are retained without undue complexity.
Clearly there are numerous topics to be considered in this area,
and in recent years we have analytically and numerically
investigated a few key issues motivated by broader research
interests. This manuscript presents an abbreviated summary of
the highlights of these studies.

Our studies of kinetic nonlinearities in nonuniform plasmas
have been motivated, in large measure, by several experimental
observations which have not yet been fully explained
quantitatively from first-principles calculations. Prominent
among these are issues related to wave generation, possibly by
distortions in the electron distribution function. In laser-plasma
experiments, an ongoing assessment is being made 4 5of anomalies
observed in the spectral features of Raman scattering which can
not be explained by conventional parametric instability theories. For -

In ionospheric modification experiments that use powerfulcRA&l ,
ground-based HF transmitters, anomalies are also observed 6,7 inrAB
the wave spectrum sampled by radar backscattering. Typically, ' ced
frequencies different than that of the HF wave are observed, and--'-
are not trivially related to parametric instabilities. In such
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experiments, stimulated electromagnetic emissions 8 are also
observed over a broad frequency band.

Another topic that has motivated our investigations is
electron acceleration by waves in nonuniform plasmas. In the
topside ionosphere, spontaneous generation of fast field-aligned
electron bursts have been observed. 9 We speculate that the
underlying mechanism involves whistler wave mode conversion
in low density plasma irregularities. Also, various aspects of beat-
wave excitation are currently being considered in regards to
features introduced by plasma nonuniformity.

PHYSICAL MODEL

In surveying the literature of wave-particle interactions in
nonuniform media, many studies are found to be deficient
because the zuurcc of wave generation is ill-defined, and the
boundary conditions are not well-posed. Regrettably, some
otherwise fine studies confuse the meaning of temporal and
spatial nonlinearities and are thus unable to make concrete
predictions in spite of significant analysis. To overcome these
shortcomings, without introducing unnecessary complexity, we
use a simple model in our studies in which wave generation and
the essential role of plasma nonuniformity are retained. We
consider the model to be a "theoretical laboratory" in which one
can systematically study various kinetic nonlinearities in a
universal scaled form, so that meaningful comparisons to a variety
of experimental scenarios can be established.

The essence of the model is illustrated in Figure 1. It
consists of a plasma with a linear density profile no(z), having
scale length L in the neighborhood of the spatial point z = 0, where
the local plasma frequency (op matches the frequency w of an
external source, S(z) exp(-icot). We envision the density gradient
to be supported by low energy electrons because, conceptually,
they have a relatively short collision mean free path. To extract
interesting effects related to wave-particle interactions we
assume the presence of energetic electrons ( fast tail electrons)
whose density nt is spatially uniform and small compared to the
low-velocity electron density, nt << no. The assumption of uniform
density for fast electrons rests upon their collision lengths being
much longer than the scale lengths of the wave structures
generated in the plasma. The spirit of the model is to treat the



response of the slow electrons through a warm-fluid description,
involving a differential equation in configuration space, while the
tail electrons are treated kinetically in Fourier transform space.

External Pump
Sets frequency co

AAS(z) exp (-icot)

Background
Plasma
Density

Fast Tail Density

Figure 1. The plasma model consists of a cold plasma with a
density gradient and a hot uniform tail.

The spatial dependence of the source function S(z) used to
resonantly excite plasma waves can model several physically
interesting situations of experimental relevance. By choosing S(z)
constant, the model rigorously describes Lri, process of linear
mode conversion of an oblique electromnii 'tic wave 10 into a
Langmuir wave (as in laser-plasma studies) in an unmagnetized
plasma, or the mode conversion of an oblique electrostatic
whistler wave 1 1 into a Langmuir wave in a magnetized plasma.
The choice of a sinusoidal S(z) can describe beat excitation by
transparent electromagnetic waves ( up or down the density
proufile) as well as direct conversion1 2 on density ripples.

SLOPE REVERSAL

The self-consistent resonant electric fields excited in the



presence of a small population of tait electrons is obtained from
the solution of a differential equation in Fourier transform space
(k-space),

i d 3k2

[- -- + i l t ] + (1)

where F represents collisional damping, and kD is the Debye

wavenumber, Xt is the susceptibility of the tail electrons and its
effect in (1) is to describe Landau damping. Equation (1) can be
solved analytically and then inverted numerically to obtain the
spatial pattern E(t), where the relevant scaled spatial coordinate is

= (kDL/3) 2/ 3 z/L. Figure 2.a exhibits the spatial dependence of
the field amplitude for the case corresponding to linear mode
conversion (constant S). The top curve corresponds to the
undamped situation (no collisions, no tail), the middle curve
contains collisional damping (but no tail), and the bottom curve
contains collisional and Landau damping. It is evident collisions
cause a reduction in the peak response near resonance where the
effective phase velocity is large. Wave-particle interactions with
the tail electrons are responsible for damping the mode-converted
Langmuir wave as its local phase velocity decreases with distance
away from the resonance point. The parameter a is the scaled tail
density. c (nt/no) (7t/2) 1/ 2 (kDL)( v/vt), with v, vt the thermal
velocity of the slow and tail electrons respectively.

Figure 2.b exhibits the electric field pattern of a Langmuir
wave generated through beat excitation with a wavenumber
vector kb that points in the direction of decreasing density. In
this case, local enhancement of the field occurs in the
neighborhood of the WKB matching point, and tail Landau
damping eventually destroys the unidirectional plasma wave.
This wave-particle interaction results in a distortion of the tail
distribution and gives rise to a heat-flux to be described later.

When the beat wave number vector points in the direction
of increasing density, the excited Langmuir wave initially
propagates to its cutoff point (i.e., op(Z) = co) where it reflects, and
then proceeds to propagate in the direction of decreasing density.
The corresponding partially-standing wave pattern is shown in
Pg. 2.c. In this case wave-particle interactions occur with fast
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Figure 2. a) The effects of collisional damping (r=0.25, ct=O) and
collisionless damping (a=1O.) on the mode converted field
amplitude. b) the field excited by a beat wave propagating
towards decreasing density, and c) towards increasing density.



electrons moving in both directions so that a bi-directional heat
flux develops.

Once the self-consistent, resonantly excited fields have been
determined it is possible to calculate the second order ( in pump-
field amplitude EO) modifications 13 in the tail distribution function
from

< 8ft(z +° - ,± ov) = 2- ) 2 L 1v{ E(k = )- )11 f0t } (2)
2m v avV v V

An interesting feature is the ability to generate a slope revelsal in
the tail distribution once a threshold field amplitude is exceeded.
Slope reversal can occur because the increase in the spectral
power density at k = (o/v can be much faster than the rate of
decrease in the zero order tail distribution. Consequently, in a
given velocity bin, the number of electrons that are promoted to
higher velocities can be larger than the number entering the bin
from lower velocities, thus a region of positive slope (bump-in-
tail) can develop in the velocity distribution. The exact value of
the threshold field is determined from a transcendental
equation' 3 , but roughly its magnitude is E0 > p(mvt 2hteL), with p -

2-5. A detailed analysis 14 related to ionospheric HF-modification
experiments shows that the presently available HF facilities
operate at power levels large enough to exceed this threshold, so
that bump-in-tail distributions can be expected to develop and
contribute to the noise spectrum observed in such experiments.
The corresponding observation of this phenomenon in laser-
plasma experiments is presently being debated 4,5 by experts.

Figure 3.a shows an example of bump formation associated
with mode-conversion (the field pattern is like that shown in Fig.
2.a), while Fig. 3.b shows the corresponding slope reversal
obtained from beat-excitation in the direction of decreasing
density. As can be seen, modifications occur in the velocity
interval v < o)/kb because the local phase velocity always remains
below this value. Figure 3.c shows a composite distribution
function (v< 0 corresponds to z -* - oo, v > 0 to z - + oo) in which
bump formation results from beat excitation in the direction of
increasing density.
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Figure 3. a) The electron distribution for az=10, b) for a beat wave
propagating towards decreasing density, and c) towards increasing
density.

EFFICIENCY OF BEAT EXCITATION

Since the physical model describes accurately the self-
consistent excitation of Langmuir waves in a density gradient, we
have considered the case in which the source S(z) corresponds to
the beat-ponderomotive force generated by two transparent (j >>



Op, j = 1,2) electromagnetic waves having frequencies Oj. The
resulting beat wave vector kb can point in either the direction of
decreasing (+, for positive z-direction) or increasing (-) density.
The modified electron distribution function can be calculated from
Eq. (2) to yield 15 the heat flux SQ induced ;n the plasma by the
beat wave process in the (±) directions

Q±e2  0+ 2 +(3

± f dv I E(k= -)I 2  fv)4m 0v v 0

Using the solution of Eq. (1) in Eq. (3) the plasma heating
efficiency rT for beat wave excitation in a nonuniform plasma can
be determined analytically. The compact simple expression for (±)
excitation is

1± =1 0 [1 - exp[-2t(1 ;- exp(-w2))]} , (4)

where w = (o0l - o2)/42kDvt, a is given in the discussion of Fig. 2,
and

1lO = 2n ( ) - (2 ) 5(kojL) 2  (5)) j n0mc2

with k0j the wavenumber of the jth wave, P2 the power density
carried by (02, and . the speed of light. In the limit of large a, i.e.,
long scale length L, the efficiency predicted by Eq. (4) reduces to
the expression previously found by Rosenbluth and Liu 16, which
scales linearly with L. However, in the limit of small a, i.e., short
scale length, Eq. (4) predicts a transition to a scaling proportional
to L2 .

BUMP-ON-TAIL RESONANT EXCITATION

Motivated by the finding that slope reversal can be
produced in the fast-tail electron distribution by resonant
excitation, we have investigated the subsequent modifications to
the mode conversion process (constant S, Fig. 2.a) when a bump-



on-tail is present. The issues of interest are: 1) Determination of
the net amplification resulting from the convective instability
driven by the slope reversal; 2) Modifications in the fast-tail
distribution due to changes in the pump field amplitude, Eo. For
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Figure 4. The spatial varying phase velocity results in first
damping and then growth from a beam distribution.



concreteness we present the results produced by a beam
distribution of the form,

nb 2
fb(v) - /2 exp {-(v-vb) 2 /2vb) } , (6)(2 7i n

with nb << no Mathematically, the beam effects are introduced

through the susceptibility Xt in Eq. (1).
The underlying physics of this problem is illustrated in Fig.

4. Figure 4.a shows the spatial dependence of the phase velocity
of the wave excited by mode conversion, i.e., oiik(z) - z-1 /2 , and
the unperturbed velocity Vb of the peak of the beam, i.e., where
afb/av = 0. In the spatial region near plasma resonance (i.e., z =

0), (o/k > Vb and the wave is damped by the beam because it
samples the negative slope r .gion of the distribution. However, at
some positive value of z, (o/k < vb, and in this region wave
amplification occurs because the wave samples the positive slope
region of the beam distribution. A complementary view is
illustrated in Fig. 4.b, which emphasizes that the phase velocity of
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Figure 5. Effect of beam on the mode converted field amplitude
for densities corresponding to a = 1., and a = 3.



the wave rontinuously swee-ps !hrcugh the beam velocity
distribution, first starting in the damping region so that the fast
part of the beam is accelerated, and then proceeding to the growth
region in which the slower beam electrons are decelerated.

The effect of the beam on the amplitude of the resonantly
excited field is illustrated in Fig. 5 for two ',alues of the scaled
beam density (x (as defined in the discussion of Fig. 2) with vb/ vb
= 5, and vb = 2 vA, where vA = oL/(kDL/3) 2/ 3 is the maximum
phase velocity of the field (determined by the width of the Airy
pattern at z = 0). It is evident that as the beam density increases,
the peak amplitude of the resonance dezreases and the mode
converted wave initially experiences strong damping, as
anticipated fr-om Fig. 4. The regrowth of the wave indeed occurs
(around = 7), but with the remarkable signature that
asymptotically the amplitude returns to the value obtained in the
absence of the beam. This implies that, although there is spatial
rearrangement of the wave energy, there is no net gain produced
by the beam. This property can be demonstrated analytically to
be rigorously correct and independent of the beam distribution
parameters for symmetric (about the beam drift velocity vb)
beam-, distributions. Selective alteration of beam symmetry can

Initial distribution

Asymptotic I

Distribution

I

• I

V V beam

-4 -2 0 2 4

Scaled Velocity

Figure 5. The beam velocity distribution changes as a result of its
interaction with the resonant field.



lead to either enhanced damping or growth of the rsonant field
(these results are not shown here).

Although a symmetric beam does not yield net wave
amplification, the resonantly excited wave does modify the beam
distribution function as illustrated in Fig. 6 for a scaled pump
amplitude (nLeEo/2m vb 2 ) = 5. It is seen that a few of the beam

electrons are accelerated to higher velocities, while a significant
number are decelerated during the process of wave regrowth.
Beyond some threshold value of EQ (equivalent to that found for
slope reversal) which is exceeded in this example, a multiple-
beam distribution is formed.

NONLINEAR LANDAU DAMPING OF RESONANT FIELDS

Since the effective phase velocity of a resonantly excited
electric field near plasma resonance scales as Ve/(kDL) 1 / 3, the
mode converted wave is essentially undamped in plasmas having

E01 exp(-iwolt)

Background 

E _01 _____

Plasma _i\

Density . f .
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Figure 7. Two external sources having amplitudes E0 1 and E0 2 and
frequencies 1 and C02 drive in resonant field patterns at two
separate spatial locations.



large scale lengths L, as illustrated by the top curve in Fig. 2.a. It
is therefore of interest to consider the role of nonlinear (beat)
Landau damping in such an environment. Figure 7 illustrates the
geometry of a case in which two external sources (uniform
pumps) are present with closely spaced frequencies, wj > C2, and
excite individual resonant electric fields of the type shown in Fig.
2.a. The two resonant field structures are linearly weakly
damped (by collisions), and propagate with phase velocities
col/k,(z), (02 /k 2 (z) which decrease as z-1 /2 , as sketched in Fig. 8.

W/k
" E 2 / k .(z )

a) I I
- I '

E I . .. .........

beat waveI ....... t ...... etwv

phase velocity
P IW .. I , . ,
II

wp(z) =co I  cop(z) =wc2

Normalized Position

Figure 8. The phase velocity of the beat wave varies as z1/2 while
the phase velocities of the individual drivers vary as Z-1/2.

Nonlinearly the waves generate a beat idler whose local phase
velocity is (co1 - 0(2)/(kj(z) - k2 (z)). For small frequency separation
the idler phase velocity equals the local group velocity and
increases as z1 /2 and scales as ve/(kDL) 1/ 3 . Thus, the idler
interacts strongly with slow electrons and background ions.



This problem is presently being investigated by S.
Srivastava in his Ph.D. dissertation, and the mathematical details
are too lengthy to be presented here. It suffices to say that the
formulation consists of three coupled equations to be solved self-
consistently for the fields El, E2 oscillating at frequencies o1, (02,

respectively, and the idler field E 3 at frequency Col - o2. The
equations for the plasma waves (j = 1,2) are differential equations
of the form

3 d2

D2 dZ2 E + ( zL EO Sj(z) (7)

with zj the cutoff point, Eoj the external pump amplitude, and Sj
the nonlinear (beat) source arising from coupling to the other two
modes. The idler response must be calculated in k-space because
of its low effective phase velocity which requires that the
response of the ions and slow electrons be described kinetically,
giving

[ [1-e( - W2, k) ]- jE3(k) + C(0)1 - (2, k) E 3(k) = S3(k) , (8)

where F is the kinetic dielectric and S3 (k) the source in k-space

(obtained from a convolution over E 1 E2 *). The relevant nonlinear
parameter in the system is (eEoL/'42Te) 2 , where Te is the electron
temperature and, for simplicity, E0 1 = E02 = Eo. The spatial
pattern of nonlinear Landau damping is illustrated in Fig. 9. The
top panel shows the amplitude of the individual fields (non-
interacting) for (0)1 - (02)/01 = 0.2. The middle panel shows the
linear and nonlinear (for (eEoL/4'2Te) 2 = .15) amplitudes for the
highest frequency wave (i.e., wj ). It is evident that the nonlinear
interaction causes strong damping. The corresponding behavior
for the wave at frequency 0)2 is shown in the bottom panel where
clear enhancements in the wave amplitude are observed. As
expected, the highest frequency wave transfers part of its energy
to the lower frequency wave and simultaneously accelerates slow
electrons and ions through the idler field. Figure 10 displays the
idler field and the power dissipation to both particle species for
Te/Ti = 1.0.
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NONLINEAR DYNAMICS OF ELECTRONS ACCELERATED
BY RESONANT FIELDS

In the analysis of the formation of slope reversal in the
electron velocity distribution discussed in Sec. 3, strong wave-
particle nonlinearities, such as particle trapping, were not
included. To obtain a better understanding of the role strong
nonlinearities play in this process, we have performed an
extensive numerical and analytical study 17 of individual electron
orbits associated with an undamped, driven-Airy pattern whose
amplitude corresponds to the top curve in Fig. 2.a. We have found
that the nonlinear interactions can be grouped in three categories



depending upon the initial velocity of the particle as illustrated in
Fig. 11.

Although the boundaries between the different categories of
interaction can be precisely determined the expressions for these
boundaries are complicated, so it is convenient to think of the
categories as corresponding to fast (v > VA), intermediate ( v = .5
VA), and slow (v < .2vA), where the comparison velocity VA is the
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Figure 11. The interactions of particles with a resonant field can
be divided into three categories depending upon velocity: fast V=
VA, intermediate V=O.5VA, and slow V=0.2VA.

fastest phase velocity of the driven-Airy pattern, VA

oL/(kDL/43) 2/ 3 . The fast particle trajectory in phase space, as
shown in Fig. 11, intersects the phase velocity curve, vp - z-1 /2 , at a
very large angle, hence the time of interaction is relatively short,
and results in a diffusive interaction in which particles are both
accelerated and decelerated as in the second-order theory
discussed in Sec. 3. For intermediate velocities it is possible for
some particles to be temporarily entrained by the wave. The
conditions for this trapping behavior are rather restrictive,
occurring only for a narrow velocity and wave-phase range. The
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few particles that can be trapped, however, exhibit deceleration as
they adiabatically follow the decreasing wave phase velocity.



Eventually, at some value of z, the adiabatic invariant associated
with the oscillatory trapped motion 18 is violated and the particle
escapes. Perhaps the most interesting and important category of
interaction is experienced by the slow particles. Every one of
these particles is found to be accelerated, independently of the
initial wave phase. Clearly, energizing the entire population of
slow particles should cause catastrophic damping of the wave.

The dependence of the asymptotic velocity vf on the wave
phase of a particle injected on the overdense side of plasma
resonance with velocity v0 is shown in Fig. 12. The top panel
corresponds to fast particles (vo = 0.8 VA) and exhibits a nearly
sinusoidal behavior, characteristic of diffusive behavior (i.e., some
phases result in energy gain and others energy reduction). The
middle panel shows the behavior of intermediate velocity (vo =
0.4 VA) particles. The constant step on the left side corresponds to
the trapped particles that have been decelerated by the wave.
The bottom panel shows clearly that slow particles (vo = 0.2 VA)
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Figure 13. The trapping of particles by the resonant field is only
temporary and occurs only over a narrow range of intitial phases.



experience a velocity increase for all wave phases.
The transient nature of the trapping process is exhibited in

Fig. 13 which shows the phase trajectories of particles with initial
velocity 0. 5 vA for those wave phases which result in entrainment.
It is evident that a small phase change results in significantly
different detrapping positions.

The physical process responsible for the phase-independent
acceleration of slow particles is illustrated in Fig. 14. Essentially,
if the particle has the wrong phase to experience acceleration
when first encountering the wave it is slowed down at a rate

PHASEVELOCITY € = 1.57c

.031.75

.5z.25 -
0

C.)5

.15
0=0.0

I I I I i I I

-10. 10. 20. 30.
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Figure 14. All slow particles are accelerated independently of the
initial wave phase.

faster than the decrease in wave phase velocity, and thus
immediately re-encounters the wave with a phase that results in
acceleration. Once acceleration occurs, the particle does not come
into resonance with the wave again because the wave phase
velocity continues to decrease with position.
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